If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-16X+61=7
We move all terms to the left:
X^2-16X+61-(7)=0
We add all the numbers together, and all the variables
X^2-16X+54=0
a = 1; b = -16; c = +54;
Δ = b2-4ac
Δ = -162-4·1·54
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{10}}{2*1}=\frac{16-2\sqrt{10}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{10}}{2*1}=\frac{16+2\sqrt{10}}{2} $
| 2^48x=8 | | -4(-6y+6)-7y=5(y-4)-1 | | 15y-18=12 | | 2+6g=11+-3g | | 1.1/3.3=6.9/w | | (2x)^2-5x+2=(1+3)x^2 | | 5x-8+5x+2+4x+4x+96=540 | | -2(x+-3)+4x=-(-x+1) | | 16=2(1+7a) | | 32+91=5y | | 3x+14=-9x-22 | | 3(1+4x)=87 | | 2x+2x+6+6=6•2x | | 40×3x+x=180 | | 6(8+3x)=-28+18x | | 4y-7y=-8+y | | 42=1/2(x+3)(2x+8) | | 5(2+v)+35v=14V | | 3x-4=1x+4 | | 4|p−3|=|2p+8|4|p−3|=|2p+8|. | | m^2+2m+2=10 | | 8(x-1)=6(x-6) | | 448.98=240+0.86x | | x-(-24)=40 | | 4/8=i/27 | | 5-3(x-7)=-5x-8 | | (X+3)^4+3(x+3)^2=4 | | Y0=m0m | | 1k=1 | | 250+20p=3,756 | | 39+9s=750 | | 3x+2=3(2x+4) |